
MATH 521A: Abstract Algebra
Exam 2 Solutions

1. Let R = Z, U = 5Z, two rings. Suppose U ⊆ V ⊆ R, and V is a ring. Prove that V = U or
V = R.
Suppose V 6= U . Then there is some element 5q + r ∈ V with 0 < r < 5. Since
U ⊆ V , also 5q ∈ V , so r ∈ V . We prove S = {1, 2, 3, 4} ∈ V in four cases: r = 1:
S = {r, r + r, r + r + r, r + r + r + r}; r = 2: S = {r + r + r − 5, r, 5 − r, r + r}; r = 3:
S = {r + r − 5, 5 − r, r, r + r + r − 5}; r = 4: S = {5 − r, 10 − r − r, r + r − 5, r}. Lastly,
since 5q ∈ V for all q, in fact R ⊆ V .

2. For ring R, and x, y ∈ R, define the centralizer of x, as Cx(R) = {a ∈ R : ax = xa}. Prove
that Cx(R) is a subring of R.

Four things to check: (1) 0Rx = 0 = x0R, so 0R ∈ Cx(R). (2) If a, b ∈ Cx(R) then
ax = xa, bx = xb. Adding, we get ax + bx = xa + xb, and by distributivity (twice), we
get (a + b)x = x(a + b). Hence a + b ∈ Cxy(R). (3) Suppose a, b ∈ Cxy(R). We have
(ab)x = a(bx) = a(xb) = (ax)b = (xa)b = x(ab). Hence ab ∈ Cxy(R). (4) Suppose
a ∈ Cxy(R). We have (−a)x = −(ax) (by theorem), and −(ax) = −(xa) = x(−a) (by
theorem again). Hence −a ∈ Cxy(R).

3. Let S be the ring of all continuous real-valued functions defined on [0, 1], with the natural
ring operations (f ⊕ g)(x) = f(x) + g(x), (f � g)(x) = f(x)g(x). Define φ : S → R as
φ : f 7→ f(1/2). Prove that φ is a homomorphism, and find its kernel and image.

We have φ(f ⊕ g) = (f ⊕ g)(1/2) = f(1/2) + g(1/2) = φ(f) + φ(g), and φ(f � g) =
(f � g)(1/2) = f(1/2)g(1/2) = φ(f)φ(g). This proves φ is a homomorphism. We prove
Im φ = R; let c ∈ R and define f(x) = 2cx. Then φ(f) = c. Lastly, Ker φ is the set of all
continuous real-valued functions f defined on [0, 1], that satisfy f(1/2) = 0.
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5. Let X = {1, 2, 3, 4, 5}, and let the power set of X, denoted P(X), be the set of all subsets
of X. Let R have ground set P(X), with operations a � b = a ∩ b and a ⊕ b = a∆b =
(a \ b) ∪ (b \ a) = (a ∪ b) \ (a ∩ b). Prove that R is a commutative ring with identity.

Associativity of ⊕ is annoying to check, so we use a Venn diagram. a⊕ b
is regions 1, 5, 2, 6, and so (a⊕ b)⊕ c is regions 1, 2, 4. On the other hand,
b⊕ c is regions 2, 3, 4, 5 and so a⊕ (b⊕ c) is regions 1, 2, 4.
⊕,� are closed since they each yield sets, so elements of P(X).
a⊕b = (a∪b)\(a∩b) = (b∪a)\(b∩a) = b⊕a. a�b = a∩b = b∩a = b�a.
We have 0R = ∅, because a⊕ 0R = (a ∪ ∅) \ (a ∩ ∅) = a \ ∅ = a.
We have 1R = X, because 1R � a = X ∩ a = a.
We have (−a) = a, because a⊕ a = (a ∪ a) \ (a ∩ a) = a \ a = ∅ = 0R.
a� (b� c) = a� (b ∩ c) = a ∩ (b ∩ c) = (a ∩ b) ∩ c = (a� b)� c.
Lastly, we check the annoying distributivity property, again with a Venn
diagram. b ⊕ c is regions 2, 3, 4, 5, so a � (b ⊕ c) is regions 3, 5. On the
other hand, a� b is regions 3, 7 while a� c is regions 5, 7. The symmetric
difference of these two sets {3, 7}∆{5, 7} = {3, 5}.
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