MATH 521A: Abstract Algebra
Exam 2 Solutions

1. Let R=7%Z,U = 57, two rings. Suppose U C V C R, and V is a ring. Prove that V = U or
V =R.
Suppose V' # U. Then there is some element 5g +r € V with 0 < r < 5. Since
U CV,alsobg € V,sor € V. We prove S = {1,2,3,4} € V in four cases: r = 1:
S={r,r+rr+r+rr+r+r+rkr=2S={r+r+r—-5nr5—rr+rkr=3:
S={r+r—-55—-rrr+r+r—5hkr=4S={5—r,10—r —r,r+r—>5,r}. Lastly,
since bg € V for all ¢, in fact R C V.

2. For ring R, and z,y € R, define the centralizer of x, as C,(R) = {a € R : ax = za}. Prove
that C,(R) is a subring of R.
Four things to check: (1) Ogpz = 0 = 20g, so O € C,(R). (2) If a,b € C,(R) then
ax = za,br = zb. Adding, we get axr + bx = xa + b, and by distributivity (twice), we
get (a +b)zr = z(a +b). Hence a +b € C,y(R). (3) Suppose a,b € Cyy(R). We have
(ab)r = a(bx) = a(xb) = (ax)b = (xa)b = x(ab). Hence ab € C,y(R). (4) Suppose
a € Cyy(R). We have (—a)r = —(ax) (by theorem), and —(ax) = —(za) = x(—a) (by
theorem again). Hence —a € Cyy(R).

3. Let S be the ring of all continuous real-valued functions defined on [0, 1], with the natural

ring operations (f @ g)(z) = f(z) + g(z), (f © g)(x) = f(z)g(z). Define ¢ : S — R as
¢ : f— f(1/2). Prove that ¢ is a homomorphism, and find its kernel and image.
We have o(f @ g) = (f ® 9)(1/2) = f(1/2) + g(1/2) = ¢(f) + ¢(g), and ¢(f © g) =
(f ®9)(1/2) = f(1/2)g(1/2) = ¢(f)¢(g). This proves ¢ is a homomorphism. We prove
Im ¢ =R; let ¢ € R and define f(x) = 2cx. Then ¢(f) = c¢. Lastly, Ker ¢ is the set of all
continuous real-valued functions f defined on [0, 1], that satisfy f(1/2) = 0.

4. Prove that Q[v/2] = {a 4+ b¥/2 + c¥/4 : a,b,c € Q} is an commutative ring with identity.

We have Q[€/§] C R, so we first prove it’s a subring. First, Op = 0+ 0v/2 + 0v/4 € Q[\“/ﬁ]
We have (a + bv/2 + cv/4) + (a/ + b2+ V/4) = (a +a) + (b +6)V2+ (c+ ¢)V4, and
(a+b3/24cv/4) (@' +V 2+ V/4) = (aa'+2bc +2cb) + (ab' +ba’ +2cc' )/ 2+ (b6 +ac +ca’) /4.
Each are in Q[v/2]. Lastly, —(a 4+ bv/2 + cv/4) = (—a) + (=b)¥/2 + (—c)v/4 € Q[v/2]. Hence
Q[V/2] is a ring.
Note that (aa’ 4 2bc' + 2¢b') + (ab’ + ba’ + 2¢c’)v/2 + (b0 + ac’ + ca’)v/4 is symmetric with
respect to primes, so Q[\?/ﬁ] is commutative. We have 1(@[%] = 1 4 0¢/2 + 0v/4 because
(la’ +2-0¢ +2-0V) + (16 + 0a’ + 2 - 0¢)V/2 + (00 + 1 + 0a')V/4 = @' +b'v/2 + V4. In
fact, Q[v/2] is an integral domain.



5. Let X = {1,2,3,4,5}, and let the power set of X, denoted P(X), be the set of all subsets
of X. Let R have ground set P(X), with operations a ©b = aNb and a ® b = aAb =
(a\b)U (b\a)=(aUb)\ (aNb). Prove that R is a commutative ring with identity.
Associativity of @ is annoying to check, so we use a Venn diagram. a & b
is regions 1,5,2,6, and so (a®b) ® ¢ is regions 1,2, 4. On the other hand,
b @ cis regions 2,3,4,5 and so a @ (b® ¢) is regions 1,2, 4.
@, ® are closed since they each yield sets, so elements of P(X).
a®b = (aUb)\ (aNb) = (bUa)\ (bNa) = b®a. a®b = anNb = bNa = bOa.
We have 0 = (), because a ® 0gr = (aU D)\ (aN@) =a\ 0 =a.
We have 1 = X, because 1l ®a =X Na = a.
We have (—a) = a, because a @ a = (aUa) \ (aNa)=a\a=10=0z.
a®boc)=ae(bnNec)=an(dnec)=(anb)Nc=(a®b)®ec.
Lastly, we check the annoying distributivity property, again with a Venn
diagram. b @ c is regions 2,3,4,5, so a ® (b ® ¢) is regions 3,5. On the
other hand, a ® b is regions 3,7 while a © ¢ is regions 5, 7. The symmetric

difference of these two sets {3, 7}A{5,7} = {3,5}.

6. Forring R, x € R, and n € N, we say x has additive order n if x +x+---+ x = Og, and

for m <n we have x +x +--- +x # Og. Define T' C R to be the set of those elements of R

-

that have an additive order. Prove that T is a subring of R.

We have four things to check to apply our theorem. (1) Op has order 1, so O € T. (2)
Suppose z,y € T, where z has order n and y has order m. We add = + y nm times, and
@+y)+@+ty)+-+ @ty =g+r+-+axtyt+y+---+y=

nm
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=0r+-++0g+0g+ -+ 0g =0gr. Hence z +y €7T. (3) Suppose z,y € T, where x has
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order n and y has order m. We add zy n times, and xy + 2y +---+ oy = (x+ 2 +--- + )y =

n

Ogry = Or. Hence zy € T. (4) Suppose x € T, where x has order n. We have
(—x)+(—2)+--+(—2)=—(r+2x+---+12) = -0 =0r. Hence —z € T.
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